The deubiquitinase USP21 maintains the stemness of mouse embryonic stem cells via stabilization of Nanog
نویسندگان
چکیده
Nanog is a master pluripotency factor of embryonic stem cells (ESCs). Stable expression of Nanog is essential to maintain the stemness of ESCs. However, Nanog is a short-lived protein and quickly degraded by the ubiquitin-dependent proteasome system. Here we report that the deubiquitinase USP21 interacts with, deubiquitinates and stabilizes Nanog, and therefore maintains the protein level of Nanog in mouse ESCs (mESCs). Loss of USP21 results in Nanog degradation, mESCs differentiation and reduces somatic cell reprogramming efficiency. USP21 is a transcriptional target of the LIF/STAT3 pathway and is downregulated upon differentiation. Moreover, differentiation cues promote ERK-mediated phosphorylation and dissociation of USP21 from Nanog, thus leading to Nanog degradation. In addition, USP21 is recruited to gene promoters by Nanog to deubiquitinate histone H2A at K119 and thus facilitates Nanog-mediated gene expression. Together, our findings provide a regulatory mechanism by which extrinsic signals regulate mESC fate via deubiquitinating Nanog.
منابع مشابه
Extract of mouse embryonic stem cells induces the expression of pluripotency genes in human adipose tissue-derived stem cells
Objective(s): In some previous studies, the extract of embryonic carcinoma cells (ECCs) and embryonic stem cells (ESCs) have been used to reprogram somatic cells to more dedifferentiated state. The aim of this study was to investigate the effect of mouse ESCs extract on the expression of some pluripotency markers in human adipose tissue-derived stem cells (ADSCs). Materials and Methods: Human A...
متن کاملDeregulation of Stemness-Related Genes in Endometriotic Mesenchymal Stem Cells: Further Evidence for Self-Renewal/Differentiation Imbalance
Background: Any irregularities in self-renewal/differentiation balance in endometriotic MSCs can change their fate and function, resulting in endometriosis development. This study aimed to evaluate the expression of OCT4 transcripts (OCT4A, OCT4B, and OCT4B1), SOX2, and NANOG in endometriotic MSCs to show their aberrant expression and to support self-renewal/differentiation imbalance in these c...
متن کاملP-106: Comparative Expression of The Stemness Gene Oct-4, Nanog, Sox-2 and Rex-1 in Normal Endometrium and in Endometriosis
Background Endometriosis is a gynecological disease defined as the presence of endometrial tissue outside the uterine cavity, which caused by various factors. Recent evidences support the presence of endometrial stem cells and their possible involvement in endometriosis. Related studies mainly focus on stemness-related genes, and pluripotency markers may play a role in the etiology of endometri...
متن کاملTargeting cancer stem cells: emerging role of Nanog transcription factor
The involvement of stemness factors in cancer initiation and progression has drawn much attention recently, especially after the finding that introducing four stemness factors in somatic cells is able to reprogram the cells back to an embryonic stem cell-like state. Following accumulating data revealing abnormal elevated expression levels of key stemness factors, like Nanog, Oct4, and Sox2, in ...
متن کاملMicroRNA-449a maintains self-renewal in liver cancer stem-like cells by targeting Tcf3
Cancer stem cells (CSCs) are thought to be responsible for tumor invasion, metastasis, and recurrence. We previously showed that the pluripotency factor Nanog not only serves as a novel biomarker of CSCs but also potentially plays a crucial role in maintaining the self-renewal ability of liver CSCs. However, how CSCs maintain Nanog gene expression has not been elucidated. Here, we demonstrated ...
متن کامل